Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem C Mater ; 11(34): 11606-11619, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-38013721

RESUMO

The effect of pressure on the structural, vibrational, and optical properties of lead thiogallate, PbGa2S4, crystallizing under room conditions in the orthorhombic EuGa2S4-type structure (space group Fddd), is investigated. The results from X-ray diffraction, Raman scattering, and optical-absorption measurements at a high pressure beyond 20 GPa are reported and compared not only to ab initio calculations, but also to the related compounds α'-Ga2S3, CdGa2S4, and HgGa2S4. Evidence of a partially reversible pressure-induced decomposition of PbGa2S4 into a mixture of Pb6Ga10S21 and Ga2S3 above 15 GPa is reported. Thus, our measurements and calculations show a route for the high-pressure synthesis of Pb6Ga10S21, which is isostructural to the stable Pb6In10S21 compound at room pressure.

2.
Inorg Chem ; 59(8): 5281-5291, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31571487

RESUMO

The crystal structure of many inorganic compounds can be understood as a metallic matrix playing the role of a host lattice in which the nonmetallic atomic constituents are located, the Anions in Metallic Matrices (AMM) model stated. The power and utility of this model lie in its capacity to anticipate the actual positions of the guest atoms in inorganic crystals using only the information known from the metal lattice structure. As a pertinent test-bed for the AMM model, we choose a set of common metallic phases along with other nonconventional or more complex structures (face-centered cubic (fcc) and simple cubic Ca, CsCl-type BaSn, hP4-K, and fcc-Na) and perform density functional theory electronic structure calculations. Our topological analysis of the chemical pressure (CP) scalar field, easily derived from these standard first-principles electronic computations, reveals that CP minima appear just at the precise positions of the nonmetallic elements in typical inorganic crystals presenting the above metallic subarrays: CaF2, rock-salt and CsCl-type phases of CaX (X = O, S, Se, Te), BaSnO3, K2S, and NaX (X = F, Cl, Br, I). A theoretical basis for this correlation is provided by exploring the equivalence between hydrostatic pressure and the oxidation (or reduction) effect induced by the nonmetallic element on the metal structure. Indeed, our CP analysis leads us to propose a generalized stress-redox equivalence that is able to account for the two main observed phenomena in solid inorganic compounds upon crystal formation: (i) the expansion or contraction experienced by the metal structure after hosting the nonmetallic element while its topology is maintained and (ii) the increasing or decreasing of the effective charge associated with the anions in inorganic compounds with respect to the charge already present in the interstices of the metal network. We demonstrate that a rational explanation of this rich behavior is provided by means of Pearson-Parr's electronegativity equalization principle.

3.
J Chem Theory Comput ; 14(1): 104-114, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29211959

RESUMO

The characterization of bonding interactions in molecules and materials is one of the major applications of quantum mechanical calculations. Numerous schemes have been devised to identify and visualize chemical bonds, including the electron localization function, quantum theory of atoms in molecules, and natural bond orbital analysis, whereas the energetics of bond formation are generally analyzed in qualitative terms through various forms of energy partitioning schemes. In this Article, we illustrate how the chemical pressure (CP) approach recently developed for analyzing atomic size effects in solid state compounds provides a basis for merging these two approaches, in which bonds are revealed through the forces of attraction and repulsion acting between the atoms. Using a series of model systems that include simple molecules (H2, CO2, and S8), extended structures (graphene and diamond), and systems exhibiting intermolecular interactions (ice and graphite), as well as simple representatives of metallic and ionic bonding (Na and NaH, respectively), we show how CP maps can differentiate a range of bonding phenomena. The approach also allows for the partitioning of the potential and kinetic contributions to the interatomic interactions, yielding schemes that capture the physical model for the chemical bond offered by Ruedenberg and co-workers.

4.
Phys Chem Chem Phys ; 18(27): 18398-405, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27340008

RESUMO

A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...